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Challenges and Opportunities For Theory and Computation 
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Challenges in Pyrolytic and Catalytic Conversion of 

Biomass 

Challenge:  Complete description of biomass pyrolysis and catalysis requires a  

‘ground-up’ description at three length scales: molecular, particle, reactor/process. 
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P. Dauenhauer 
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Homogeneous Supported Metals 

Microporous Materials 

Metals Surface 

Bimetallics 

Challenges of Current Material Architectures 

Sulfides, Carbides, Nitrides 

Catalysis for Nanostructured Materials,  NSF WTEC study, 2010. 



Selective Molecular Transformations 
Model Compound Studies 



Selective activation of C-O, C-H & C-C bonds of oxygenates 

Polyols, Cyclic Ethers, Acids, Aldehydes and Ketones 

Activation and conversion of methane and light alkanes  

Activation and conversion of phenolics 

Catalyst Needs and Opportunities 

Gas to liquids   - Fischer Tropsch Synthesis 

Fundamental Model Catalytic Studies 



Structurally Constrained Sites 

Enzymes: Unique Adaptive Reaction Environments 
Manipulating and Controlling Molecular Transformations 



VDW Interactions 
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   Sites 
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Multiple Point Contact 

Structurally Constrained Sites 

3D Flexible Reaction Cavity 
H-Bonding Interactions 

Manipulating and Controlling Molecular Transformations 
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Ab Initio Molecular Dynamics 
Free Energies for Complex Solution/Metal Interfaces 

12 Ring Opening of THFA over Metal Alloys in Water  



Advances in CPU and Methods: Significant  

Advances in Simulation  Environments 

P. Cummings, Vanderbilt University.  



Reactive Force Fields - Molecular Dynamics 

A. Van Dyne (PSU), W. Goddard (Caltech)  



Computational Catalysis  
Where Are We Today? 

Elucidation of Mechanism 

Initial Stages of Catalyst Design 

Metals, Composition, Support, Surface Structure, Promoters 

Prediction of Structure and Properties.  

Connection with Spectroscopy 

Determination of Energetics 

NSF Report, “An International Assessment of Research in Catalysis by  

Nanostructured Materials”,   (http://www.wtec.org/catalysis/) 



R 

1D 2D 3D 

Controlling Design 



Reaction Environment Effects Catalyst  

Performance 
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Simulating Catalytic Kinetics 
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Vinyl Acetate Synthesis 
Selective and Unselective Pathways 
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M. Neurock and W. Tysoe. 



Neurock, M.,  J. Catal.,  J. Catal., 216 (1-2): 73-88, 2003.  



Neurock, M.,  J. Catal.,  J. Catal., 216 (1-2): 73-88, 2003.  



Activity improvement: 2X 

Selectivity improvement: 89% to 95% 

Neurock, M.,  J. Catal.,  J. Catal., 216 (1-2): 73-88, 2003.  

Ensemble and Ligand Effects 



Design of Site and Ensemble to Control  

Self Assembly 

M. Neurock 



Kinetic Consequences of Chemisorbed O* 
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Decreasing O* coverage 

Chin, Y., C. Buda, M. Li, M. Neurock, and 

E. Iglesia, J. Am. Chem. Soc.,133, 40, 15958-15978, 2011.  



Kinetic Consequences of Chemisorbed O* 
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Decreasing O* coverage 
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Chin, Y., C. Buda, M. Li, M. Neurock, and 

E. Iglesia, J. Am. Chem. Soc.,133, 40, 15958-15978, 2011.  



Zhu, Q., S.L. Wegener, C. Xie, O. Uuche, M. Neurock, and  T. J. Marks, Nature Chem.,5, 2, 104-109, 2013. 



Effect of the Liquid-Phase 



Paths in the Conversion of Carbohydrates to 

Chemicals and Fuels 
Dumesic, 2007 



Alloying Pt with Ru 

Desai, S. K., and M. Neurock, Electrochim. Acta, 48 (25-26), 3759-3773, 2003. 



Hydrogenolysis for Selective Removal of 

Oxygen from Biomass 

Conversion of Polyols to High Value Chemicals 

2 hydroxymethyl-tetrahydropyran 

tetrahydrofurfuryl alcohol 

glycerol 
Chia, M., Y. J.A. Dumesic, et al.,  

J. Am. Chem. Soc.,  133, 32, 12675689, 2011 
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Chia, M., Y. Pagan-Torres, M. Neurock, J.A. Dumesic, 

et al. J. Am. Chem. Soc., 133, 32, 12675689, 2011 

Rh 



Acidity of MO-H 

Chia, M.,...M. Neurock, J.A. Dumesic,, et al.  

J. Am. Chem. Soc., 133, 32, 12675689, 2011 



Ring Opening at Solution/RhReOH Interface 

EACT = 0.9  eV 

Chia, M.,...M. Neurock, J.A. Dumesic, et al.  

J. Am. Chem. Soc., 133, 32, 12675689, 2011 



Direct Correlation between Polyol Hydrogenolysis  

Activity and Carbenium Ion Formation Energies 

Chia, M., Y. Pagan-Torres, D. Hibbitts, Q.H. Tan, H.N. Pham, A. Datye, M. Neurock, R.J.  

Davis, and J.A. Dumesic, J. Am. Chem. Soc., 133, 32, 12675689, 2011 

Cyclic ethers w/  

a-OH 

 

a,b  2o diols 

a,g  2o diols 

1,2 terminal diols 

2o carbenium ions a,w diols 



Bifunctional Catalysts 

Similar trends for RhMo, PtRe, PtMo, IrRe, etc. 

Direct Contact Between: 

  
Reducible Metal - Hydrogenation 

Oxophilic Metal  -  Strong Acidity    

Chia, M., Y. Pagan-Torres, D. Hibbitts, Q.H. Tan, H.N. Pham, A. Datye, M. Neurock, R.J.  

Davis, and J.A. Dumesic, J. Am. Chem. Soc., 133, 32, 12675689, 2011 



Opportunities & Challenges 

Learn from structure and mechanism of enzymes. 

Establish atomic features and nanoscale environments that 

result in active, selective and stable catalysts.  

Catalyst Design 

Determine the “rules” that govern the reactivity of different  

molecular classes.  



Challenge 

How do we do this for complex feeds 

and the processing of more complex solids? 

Resilience to S- and N- containing molecules 

Influence of water 

Interactions in complex mixtures 

Effects of resulting polymeric liquid phase and solids 

M. Neurock 



Feedstock Characterization 

Conversion to  

Attribute  

Distributions 

Stochastic Molecule Construction 

Feedstock Construction 

Modeling Reactions of Complex Hydrocarbon Feeds 

Molecular Feedstock Construction 

  (100,000 Molecules) 

M. Neurock, M.T. Klein, Chem. Eng. Sci.,  

49, 24A,4153, 1995. 

Neurock, M. T. Klein, et al., Chemical Reactions in  

Complex Mixtures: The Mobil Workshop,126, 1991. 



Molecular Pathway & Kinetics 
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Kinetic Monte Carlo Reaction Simulation 

Temporal  

MW Distribution 
Temporal Molecular  

Transformations 

M. Neurock, M.T. Klein,Chem. Eng. Sci., 49, 24A, 4153, 1995. 

Molecular Feedstock Construction 

  (100,000 Molecules) 

Modeling Reactions of Complex Hydrocarbon Feeds 
Reactivity  

Neurock, M. T. Klein, et al., Chemical Reactions in  

Complex Mixtures: The Mobil Workshop,126, 1991. 



Temporal Changes in Global Products 

Temporal Molecular Distributions 

Modeling Reactions of Complex Hydrocarbon Feeds 
Product Formation M. Neurock, M.T. Klein, Chem. Eng. Sci.,  

49, 24A,4153, 1995. 

Neurock, M. T. Klein, et al., Chemical Reactions in  

Complex Mixtures: The Mobil Workshop,126, 1991. 



Integrating Molecular Kinetic Models and  

Detailed QM and Catalyst Kinetic Simulations 

M. Neurock 



Future Needs and Opportunities 



Needs/Opportunities – Model Systems 

Synergistic Experimental  and Computational 

Model  Compound Studies 

Synergistic Experimental & Computational   

Model  Mixtures Studies 

Detailed analysis of molecular products 

Rigorous kinetics 

Isotopic labeling studies 

Detailed characterization studies 

M. Neurock 



Needs/Opportunities – Complex Model Systems 

NMR 

Quantitative Mass Spec 

Characterization of Model Solids and Complex Liquids 

Measurements, Theory and Simulation 

M. Neurock 



Needs/Opportunities – Complex Model Systems 

NMR 

Quantitative Mass Spec 

In-Situ Quantitative Carbon Detection 

Characterization of Model Solids and Complex Liquids 

Measurements, Theory and Simulation 

P. Dauenhauer, UMN. 

M. Neurock 



Needs/Opportunities – Complex Model Systems 
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Quantitative Mass Spec 
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Novel reactors that provide fundamental rigorous kinetics 

M. Neurock 



Needs/Opportunities – Complex Model Systems 

NMR 

Quantitative Mass Spec 

In-Situ Quantitative Carbon Detection 

Characterization of Model Solids and Complex Liquids 

Measurements, Theory and Simulation 

Reactivity of Model Solids and Complex Liquids 

Novel reactors that provide fundamental rigorous kinetics 

Pulse Heated Analysis of Solid Reactors 

P. Dauenhauer, UMN. 



Algorithm Developments 

Ability to model more realistic reaction environments 

Faster, cheaper, and more accurate methods. 

Better integration between time and length scales. 

Robust force fields for broad application of materials.  

Mixtures, Reactivity of Solids, Liquid Phase, Catalytic Poisons,  
Complex Catalytic Architectures 

Reactive FF, Charge Transfer, Induced Polarization 

Order N-Scaling, Improved Transition State Search Algorithms, 
Better DFT Functionals, Improved Property Prediction, Accurate 
Semiempirical Methods.. 

Electronic, Molecular, Meso, Macro, and Process  

M. Neurock 
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